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Abstract--Antitaxial, syntectonic crystal fibres are modelled here as 'mechanically-passive' features, the fibres 
representing displacement paths, forming within a homogeneously deforming material. Evidence that many 
fibres develop in this way is widespread: asymptotic curvature, thinning of fibres, and strained old fibres. A 
measuring technique is proposed by which the complete deformation history (excluding translation) may be 
determined. The method involves the iterative unstraining of two complete fibres whose development began and 
ended simultaneously. A source of error is introduced by assuming that each of the two fibres developed at 
constant proportional rates, although synthetic examples suggest this error to be minimal. It is suggested that the 
kinematics of non-passive fibres are unobtainable since the rheologies and boundary conditions of the material 
involved are relatively unknown, and cannot be determined from geometry alone. Analysis of natural fibres 
found Within the Ordovician slates in New Jersey, U.S.A. indicates that volume losses of up to 50% may occur 
during the formation of some slates. General constraints concerning the geometrical analysis of syntectonic 
crystal fibres are briefly discussed, and it is concluded that deformation histories must be interpreted with some 
modicum of caution. 

INTRODUCTION 

IN ORDER to fully understand the development and evol- 
ution of tectonic features the geologist requires infor- 
mation concerning the final and original geometry, and 
the path along which the geometry evolved. This much 
information enables us to place firm constraints on, for 
example, the potential rheology of the deforming 
materials, or the validity of cross-sections through 
mountain belts. In order to realize the original form of a 
tectonic feature it is desirable to know the deformation 
state of the feature; that is, the finite strain magnitudes, 
the rotational components of the deformation, the orien- 
tations of the strains, and the variations in volume 
change. Finite strain studies under particular cir- 
cumstances may offer viable strain histories (e.g. 
Graham 1978) but this is the exception rather than the 
rule. Syntectonic crystal fibres offer the greatest poten- 
tial for the calculation of incremental and progressive 
strain histories, and indeed have been used extensively 
in the determination of the movement history of the 
Helvetic Alps (Durney & Ramsay 1973), and more 
recently as indicators of fold kinematics (Beutner & 
Diegel 1985). 

This paper looks at the kinematics of continuously 
grown antitaxial syntectonic crystal fibres and the possi- 
bility of determining the various deformation compo- 
nents from such fibres. I will specifically address fibres 
found within pressure-shadows adjacent to spherical 
objects, although the analysis is valid for all continuous, 
antitaxial, mechanically passive fibres. The first part of 
the paper will describe the potential kinematics of fibre 
development and the information which may be ex- 
tracted from the fibres assuming this model is correct. A 
measuring technique is proposed, and examples (syn- 
thetic and real) are discussed. The second part addresses 

problems intrinsic to both the proposed technique and 
those already established. The general limitations 
associated with any method are reserved for the dis- 
cussion. 

KINEMATICS OF FIBRE DEVELOPMENT 

Fibre geometries have been well documented (e.g. 
Durney & Ramsay 1973, Beutner & Diege11985); there 
can be little doubt that the geometrical development of 
such fibres is variable. The often pristine and apparently 
face-controlled fibres shown by Durney & Ramsay 
(1973) appear to have developed as resilient, if not rigid, 
objects. However, the fact that the shape of the fibre 
collection at the distal end is often similar to the shape of 
the face of the rigid object from which the fibres have 
developed is not considered unequivocal evidence that 
the fibres have behaved rigidly. Such a geometry may 
also be obtained by allowing the fibres to develop within 
a plane in which no strain occurs perpendicular to the 
fibre lengths; within, for example, the XY plane of a 
plane-strain ellipsoid. By contrast, the asymptotic curva- 
ture and often recrystallized ends of other fibre com- 
plexes (Beutner & Diegel 1985, Ellis 1984) are strongly 
suggestive of a mechanically passive process (Figs. 1 and 
6). Unfortunately, it is not yet possible to distinguish, 
purely from the geometry, the specific kinematics of any 
fibre complexes. The current state of the art is such that 
a particular growth model can only be assumed; the 
'activity' of fibres remains elusive. It is likely that the 
spectrum of fibre development is a continuous one vary- 
ing from 'rigid' through 'partially rigid' to 'mechanically- 
passive'. The associated mathematics describing the 
kinematics are, in theory, well known: the simplest 
mathematical description is that of the 'mechanically- 
passive' process. 
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The kinematics of any other fibre behaviour, however, 
is dependent on the specific rheology of the rigid-object/ 
fibre complex, the rheological contrast between matrix 
and complex, and the coherence across the various 
boundaries. If for example, the fibre complex has any 
coherence with the matrix then it must undergo some 
rotation. Rosenfeld (1970) showed that, given cohesion 
between a spherical object and matrix, rotation will 
occur during a general deformation. Such cohesion 
allows shear stresses to be transmitted across the matrix- 
object interface allowing, for example, a growing por- 
phyroblast (such as garnet) to rotate. It seems unlikely 
that significant shear stresses will be transmitted across a 
pyrite-matrix boundary; such a boundary is particularly 
incoherent due to both the high contrast of the phases 
involved, and the presence of a solution at the interface. 
For the model proposed here a continuous slip condition 
is assumed for the object boundary, and the object is not 
permitted to rotate. This condition is inferred in the 
stipulation that the fibres must be antitaxial. 

With respect to a non-spherical object: due to the 
incoherence of the interface, shear stresses will virtually 
vanish, although the uneven distribution of normal stres- 
ses will cause the object to rotate. Rotation of the object 
will cease once the normal stresses are symmetrically 
disposed about the principal axes of the operating stress 
system. If the stress system is continually changing then 
the object will continue to rotate. It is not uncommon to 
observe fibres adjacent to irregular objects, although 
whether their geometry reflects the local matrix strain or 
the rotation of the object is unknown. 

Continuous, antitaxial syntectonic fibres commonly 
show characteristics compatible with formation within a 
'mechanically-passive' environment, and it is considered 
that such a process may well account for the develop- 
ment of most fibre complexes. In particular, concerning 
the development of quartz fibres, there seems little 
reason to consider these to have been rigid when one 
recalls that quartz is a particularly ductile material under 
even low grade metamorphic conditions. Under condi- 
tions in which quartz may not be ductile (e.g. immedi- 
ately post-diagenesis?) the process of pressure-solution 
may still effect a potentially passive behaviour of quartz 
fibres. 

The kinematics of a 'mechanically-passive' process 
are as follows. As two points move apart a crystal fibre 
will be precipitated such that the fibre directly reflects 
the displacement path at the time of formation. (Note 
that no reference is made at this stage to the potential 
mineralogy of the fibre. The kinetics of the various 
mineral species involved in this process are relatively 
unknown, and are not addressed here.) The proposal 
that continuously grown fibres connect points which 
were once adjacent, and therefore represent displace- 
ment paths, seems more realistic than making a direct 
correlation between fibre orientation and the principal 
incremental strain directions since the latter do not 
reflect the motion of particles in a rock but the resultant 
strain due to these various motions. During the defor- 
mation these and all other particles will continue to have 

their relative distances and orientations changed. For 
the model, it is assumed that the displacements are 
homogeneous over the rigid-object/fibre scale. That is, 
the distal fibres are assumed to deform under the same 
displacement field as that which simultaneously pro- 
duces the youngest fibres at the pyrite edge. 

The displacement path of one particle relative to 
another may be calculated in the following manner. 
Recall that a finite homogeneous deformation (de-  
scribed by the transformation constants in matrix form, 
D) may be decomposed into a number of infinitesimal 
deformation increments (Elliott 1972) 

where 

D, = D n D n _  1 . . . D1, (1) 

D i = =_ 

Ov 1 + 
Ci di  Ox Oy _i 

and is known as the deformation gradient tensor, and 
where u and v are displacements in the x and y directions, 
respectively. 

Note that the rotational component of any defor- 
mation increment need not be zero. In addition, none of 
the increments need be constant-area transformations. 
Thus, each increment comprises four independent trans- 
formation constants. 

A point is moved thus: 

Pl = Dpo, (2) 

where P0 and Pl are, respectively, the coordinates of the 
original and deformed points in vector form. The new 
point, Pl, may be returned to its original site by the 
inverse operation 

Po = D - l p l  • (3) 

crystal fibre after / 
three increments e3 . / ~  

' r e ~ / ~  e3 //I d~isplacement path 

2 J  
Fig. 2. Development of an antitaxial, mechanically passive, syntec- 
tonic crystal fibre, and the displacement path of the most distal 
particle. Three increments are shown; the incremental principal 
stretch rotates counter-clockwise. (In order to emphasize the changing 
lengths and orientations of fibre increments the diagram is highly 

schematic.) 



Progress ive  d e f o r m a t i o n  f rom crysta l  f ibres 

Fig. 1. Antitaxial, syntectonic crystal fibres developed adjacent to rigid objects (pyrites). (a) Quartz and chlorite fibres show 
an asymptotic curvature and thinning toward the distal end, suggesting a mechanically passive origin. (b) Quartz fibres 
become progressively recrystallised toward the distal end, showing a non-rigid character. The diameter of each pyrite is 

approximately 60/xm (photograph (a) by kind permission of Ed Beutner). 
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Fig. 6. Natural fibre geometries and associated deformation histories. The orientation of the cleavage trace is indicated on 
the O scale. Note the asymptotic curvature of the fibres, suggesting a mechanically passive origin. The fibres are made of a 
mixture of chlorite, white mica, and quartz. The pyrites are about 25/zm in diameter. (See previous figures for symbols.) 
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The crystal fibre path is calculated in the following 
way: the final fibre increment is generated by the particle 
point at P0 moving to Pt via D~; P2 is found by moving P0 
via D,_x followed in time by D~, and so on. In other 
words 

Pl = D~ P0 
P2 = D,D,_~p0 

p, = D, D~_] • . • D1 P0. (4) 

Figure 2 shows the relationship between the particle 
displacement path, the crystal fibre, and the incremental 
(maximum) principal axis. 

THE MEASURING TECHNIQUE 

Consider again the motion of two points, P0 and q0, via 
any deformation increment. In two dimensions 

p] = D P0 (5) 
qa = D q0 

(Fig. 3). Now assume that we observe the same points at 
some later date but in a reference frame rotated 0 
counter clockwise. Thus 

Po = R  po; Pl = R p t ;  Clo = R q0; a n d  tT1 = R q l ,  

(6) 

where 

~ c o s 0  sin00] 
R =  [ _ s i n 0  cos " 

Since, from eqn (6), P0 = R-1/~0, P] = R-1 Pl, etc. 
substituting in (5) and solving for,0t, and t~l 

Pt = R D R-1 P0, and ql = R D R-1 t~0. (7) 

The quantity M = R D R -~ is now the apparent 
deformation gradient tensor. (Note that M is defined by 
these operations to be a second-order tensor.) That is, p~ 
= M P0, and ql = M q0 giving four equations and four 
unknowns. The reader should note that the rigid body 
rotation, R, is not  the same as the rigid body rotation 
component of the deformation. The point behind the 
operations described by eqns (6) and (7) is to emphasize 
that the frame of reference in which we finally come to 
examine the fibres is irrelevant. The deformation tensors 
M and D describe the same quadric, and yield the same 
relative deformation components since they are related 
only by a rigid body rotation (Nye 1957). The compo- 
nents of M are easily converted into the type of strain 
data with which structural geologists are familiar (e.g. 
Sanderson 1982). 

Stated in other words, the method for the determi- 
nation of the incremental deformation history involves 
the following steps: 

(1) Place the origin of a Cartesian coordinate system 
over the central point of the circular rigid object (e.g. a 
framboidal pyrite); the axes should be scaled such that 
the fibre increments will represent strains of less than 

/•?op• "% / 
o% 

o ( ~ i  pl N~=~O ~ 

Fig. 3. A view of the relative motion of two particles, viewed in an 
original framework (top), and one rotated by O (bottom). See text for 

details. 

about 2% (thus approximating infinitesimal strains). 
Trial and error is suggested at this point. 

(2) Two fibre lengths are chosen and divided into an 
equal number of increments. The fibres should be chosen 
such that, as best as may be determined, they both began 
and ended their development simultaneously, and that 
the full length of each is preserved. To achieve this, the 
fibres should be fairly close to each other. 

(3) The coordinates of the fibre-increment ends are 
treated in the following way: 

the nearest points (p] and ql) are returned to their 
points of origin (P0 and q0) thus 

P0 = M-1 Pl, q0 = M-Z ql- (8) 

This operation reveals the final deformation increment. 
The remaining data points are adjusted by M -~. Thus,pz 
now becomesp~, etc. This third step is repeated until the 
entire fibre length has been analysed. The incremental 
deformation history is given by the individual defor- 
mation matrices, Mi, the progressive deformation his- 
tory by their progressive product, eqn (1), and the finite 
deformation state by the finite product. 

The importance of the necessity for homogeneous 
strain is now apparent: if the strain was not homo- 
geneous (on the scale of the pyrite-fibre complex) then 
the cycle of adjustments to the gradually decreasing 
number of fibre increments could not be made, and the 
strain history becomes indeterminate. 

Of particular value is the ability to record the variation 
of area change. Area change is recorded by the deter- 
minant of the deformation matrix which is also an 
invariant property. 
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There are two potential sources of error that need to 
be emphasized. The first is mentioned under point 2 
above, and concerns the identification of two fibres 
which began and ended their development simul- 
taneously. During an increment of infinitesimal strain 
fibres will have a maximum separation of 90 ° of arc, and 
thus may be chosen within this distance in an ideal case. 
However, during a rotational deformation some of the 
edge fibres will cease to grow, while new ones begin at 
the opposite side of the trail. Therefore, in order to 
ensure the best choice of fibres, they should probably be 
within about 30--40 ° of arc to each other, close to the 
centre of the complex, and away from the side which 
appears to be progressively falling outside the extension 
zone. 

The second source of error concerns the division of 
the fibre length into an equal number of increments. 
Note that increments of any pair will probably not be of 
the same length. During a rotational deformation history 
the relative lengths of growth along any two fibres may 
not be constant, but rather a function of their change in 
orientation within the displacement field. Based on the 
examples discussed in a later section, this source of error 
appears to be minimal. Nevertheless, during parts of the 
deformation which involve significant rotation this 
source of error may become more important. 

EXAMPLES 

In order to demonstrate the technique described here, 
a set of synthetic examples and a real fibre-trail have 
been analysed. A computer program, FIBRE, was 
developed using the equations presented in this paper. 
The geometry of synthetic crystal fibres was calculated 
using eqn (2); the co-ordinates of these fibres were then 
plotted and joined by hand in order to introduce some 
form of minimal error. New co-ordinates were then 
produced from a digitizing tablet. In all cases the match 
between the expected and resultant deformation his- 
tories is excellent (Figs. 4 and 5). The analysis of a 
relatively complex deformation history yielded some 
'noise' at the beginning of the history which appeared to 
settle above a strain ratio of about 1.5 to 1.7 (Fig. 4). 
This is attributable to the fact that the earliest-formed 
fibres are, during the analysis, subjected to the most 
amount of numerical manipulation. For example, one 
part of the program FIBRE involves the redefinition of 
the fibre geometry, whereby the fibre is described by a 
set of co-ordinates which divide the fibre length into an 
equal number of small increments, each increment 
approximating an extensional stretch of about 2%. The 
new co-ordinates are altered by successive unstraining 
events; the most distal fibres may undergo several 
hundred redefinitions. 

Natural fibre geometries from the Ordovician Mar- 
tinsburg slate as exposed in the Delaware Water Gap, 
New Jersey, were analysed using this technique. Results 
gave what initially appear to be unrealistic deformation 
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Fig. 4. Top, numerical simulation of the development of an antitaxial, 
mechanically-passive, syntectonic crystal fibre showing the relation- 
ship between the fibre and displacement path of the most distal 
particle. Bottom, the synthetically produced deformation history and 
the history determined with the technique described here. Symbols: R 
= (1 + e0/(1 + e2), 0 = orientation of maximum principal stretch, 
positive angles are counter-clockwise; to, rigid-body rotation, positive 

angles indicate counter-clockwise rotation. 

histories, particularly with respect to the magnitude of 
the minor principal strain axis. The example shown in 
Fig. 6 is apparently associated with an area loss of 
approximately 40%. This sample was prepared as a 
thin-section perpendicular to a slaty cleavage and paral- 
lel to a moderately developed stretching lineation; it is 
considered to lie approximately parallel to the finite XZ 
principal plane. In order to conserve volume during the 
deformation the product of the principal stretches 
should equal unity, thus the intermediate stretch for the 
example shown in Fig. 6 would equal c. 1.8. Examination 
of orthogonal sections shows fibres in the XY principal 
plane to be relatively straight, indicating a value of 
stretch in the Y direction of approximately 1. If Y = 1 the 
sample has undergone just over 50% volume loss. 

Interpretation 

The results obtained from the analysis of natural fibre 
geometries are significant in that they suggest the possi- 
bility of large volume losses which may have occurred 
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Fig. 5. Examples of synthetic fibre geometries and the correlation between expected and resultant deformation histories. 
Solid bold lines adjacent to the 'pyrites' represent crystal fibres. Solid lines on graphs represent the synthetic (expected) 
data; dashed lines the results of analysis with FIBRE. Where lines are indistinguishable only the synthetic line is shown. In 
all examples the deformation history is coaxial, with the maximum principal stretch horizontal. Symbols: Incs, number of 

deformation increments; AA%, area change; R, strain ratio. 

during the deformation. Large volume losses are not 
uncommonly called for, particularly in the formation of 
slates (see for example Sorby 1853). Similar volume-loss 
magnitudes have been found in the Martinsburg Forma- 
tion by Beutner & Charles (in press) and Wright & Platt 
(1982). 

The volume loss described here may of course be 
confined to the immediate volume about the pyrite-fibre 
complex, although the homogeneity of the microtexture 
implies a more pervasive process. A volume loss of such 
a magnitude implies mass-transfer, and is significant in 
that theoretical models of deformation are normally 
constrained to conserve mass. When volume changes 
occur during the deformation they add to the tectonic 
part of the strain, and are consequently more significant. 
The scope of the present paper does not afford a detailed 
consideration of the results obtained here; further 
analyses of natural fibre geometries will be presented 
elsewhere. 

COMPARISON WITH OTHER TECHNIQUES 

Measuring techniques have been proposedby Durney 
& Ramsay (1973), Wickham (1973), Casey et al. (1983), 
Ellis (1984), Ramsay & Huber (1984) and Beutner & 
Diegel (1985). All the methods (including the present 
one) involve the geometry of at least one complete fibre. 
The most commonly used method is that proposed by 
Durney & Ramsay (1973) in which incremental fibre 
lengths are directly correlated with incremental principal 
directions, and where the fibres are thought to behave 
rigidly. This method fails to give correct strain histories 
for two reasons. First, it neglects to take into account any 
rotation or potential change of shape which would occur 
if there existed any coherence between fibres and matrix. 
Secondly, during a general deformation (i.e. non- 
coaxial) no single continuous fibre directly reflects the 
orientation of the principal strain axis. 

A more recent technique proposed by Ramsay & 
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Huber (1983), intended for "deformable fibres", 
involves a similar iterative unstraining of the fibre length 
as required in the present method. Each increment of 
fibre length is again directly correlated with the 
maximum incremental principal axis, and therefore, as 
argued for the original method by Durney & Ramsay 
(1973), may yield incorrect results. Furthermore, the 
iterative unstraining is performed using a relationship 
which appears to require a priori knowledge of the 
second principal strain axis (see Ramsay & Huber, eqn 
D.3, p. 293). Since Ramsay & Huber's method does not 
include the determination of the minor principal stretch 
the iterative unstraining is not possible. 

Beutner & Diegel (1985) have modified Durney & 
Ramsay's (1973) 'pyrite' method: the radius term in the 
latter is replaced by the component of the radius in the 
incremental extension direction. The method suffers 
from the same limitations as that of Durney & Ramsay 
(1973). 

Wickham (1973), proposed the same kinematics as 
are invoked in this study. The measuring technique 
differs in detail in that Wickham first finds the displace- 
ment path of one particle relative to another within a 
reference frame that is continually rotating with the 
deformation. In this reference frame, the displacement 
path is the geometrical inverse of the fibre. This path is 
then used to calculate the components of the symmetri- 
cal part of the deformation gradient tensor 

S ~-- LS21 

where Sij (i, j = 1, 2) are the stretch components, and 
Sq = Sji (i ~ j). 

In order to solve the appropriate equations Wickham 
constrains the deformation to be area constant. That is, 
det (S) = 1. This is a valid and elegant method except 
that the accuracy of the technique is particularly suscep- 
tible to area changes (see error analysis by Wickham 
1973). Thus, prior knowledge of the area change is 
required if the results are to be meaningful. This is 
obviously not a satisfactory condition; fibres are usually 
analysed on one of the principal planes of the finite strain 
ellipsoid, none of which, except the X Z  plane of a plane 
strain state, involve a constant area transformation. 

Casey et al. (1973) examined fibres which developed 
within an oblate strain section (or 'chocolate-tablet' 
section). In such sections the Complex array of fibres 
may develop in a diachronous nature. If synchronously- 
developed fibres cannot be identified, an unequivocal 
strain history cannot be determined. 

DISCUSSION 

Problems intrinsic to the various techniques have 
been discussed above. There remain several questions, 
however, involving the interpretation of strain histories 
deduced from syntectonic crystal fibres. In brief these 
problems concern the following points. 

The extrapolation o f  measured strain histories to 
larger scales 

It is not sufficient to be comforted by the fact that, 
within a small rock volume, fibres adjacent to a number 
of rigid spherical objects present very similar geometries 
and therefore reflect the general matrix deformation; 
this may simply be a demonstration of the homogeneity 
of the individual heterogeneities! A particular example 
of the potential danger in extrapolation is described 
below under size effects. Nevertheless, various studies of 
syntectonic fibres (e.g. Durney & Ramsay 1973) do 
appear to yield results which fit our geological expec- 
tations. A particularly elegant model of the kinematic 
development of overturned folds by Beutner & Diegel 
(1985) shows that such extrapolation may well be valid. 

The origin o f  curved fibres 

Is curvature syn- or post-tectonic? An original curva- 
ture (i.e. syntectonic) may be noted when the central 
fibre at any specific locality does not remain the central 
fibre (Fisher 1983). 

The necessity that fibres remain in one 'flat' plane 

Unless non-Euclidean thin-sections can be made, this 
constraint presents obvious problems. All methods 
available to date, including the one described in this 
paper, require fibres to remain in a single plane. 

Sizeeffects 

Beutner & Diegel (1985) noted considerable strain 
variation recorded by fibre complexes of different sizes. 
This was attributed to the heterogeneity of the strain 
over an area less than that of a thin-sectiop, whereby 
pyrites greater than 50-70/zm (large enough to encom- 
pass many cleavage lamellae) record an average and 
more consistent strain, and those smaller than about 
25/zm (small enough to be encompassed by a cleavage 
lamella) record a less consistent value. 

Total or tectonic strain? 

Do fibres represent the total strain, including early 
compactional deformation, or only the tectonic strain? 
Ellis & Schriber (1984) recently described fibre com- 
plexes and grain shape-fabrics from the same thin-sec- 
tion: the fibres record a significantly greater strain than 
the shape-fabric. This was attributed to the earlier 
development of the fibres, and a possible progressive 
redefinition of the grain texture by dislocation processes. 
It appears at least from this example that fibres record 
the total strain. 

Chronological comparisons 

Whichever method is chosen to graphically portray a 
deformation history, the result is usually a line varying in 
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orientation between a pair of axes. The chronological 
development of that particular line, however, is unap- 
preciated. As a consequence, it is not possible to show a 
time-sequential comparison of deformation histories. 
The interpretation and comparison of deformation his- 
tories must be carried out within the context of the 
overall structure, which, to some extent, places the 
structural geologist in a chicken-and-egg situation. 

CONCLUSIONS 

Continuous syntectonic crystal fibres present struc- 
tural geologists with the greatest potential for the deter- 
mination of progressive deformation histories. The 
technique proposed here is based on a kinematic growth- 
model whereby fibre increments are formed between 
mechanically passive particles which are moving apart in 
a homogeneously deforming material. All the defor- 
mation components (excluding translation) can be deter- 
mined from the geometry of two fibres, provided that 
they began and ended development simultaneously. A 
source of error arises from the fact that during a general 
rotational deformation the relative growth rates along 
any two fibres will not remain constant. Synthetic 
examples, however, show this error to be minimal. The 
iterative unstraining method described here requires the 
strain increments to have been homogeneous at the scale 
of the pyrite-fibre complex. 

If fibres develop in any other way it may not be 
possible to determine an accurate deformation history; 
this arises from the inability to recognize the appropriate 
rheologies and/or boundary conditions purely from the 
geometry of fibres. 

The results obtained from natural examples suggest 
that significant volume losses (and possibly mass-trans- 
fer) may occur during the formation of a slaty cleavage. 

There are a sufficient number of problems intrinsic to 
any incremental deformation measuring technique, in 

addition to interpretative questions, that require 
geologists to treat syntectonic fibres with extreme cau- 
tion. 
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